When a muscle contracts and shortens against a load, it performs work. The performance of work is fuelled by the expenditure of metabolic energy, more properly quantified as enthalpy (i.e., heat plus work). The ratio of work performed to enthalpy produced provides one measure of efficiency. However, if the primary interest is in the efficiency of the actomyosin cross-bridges, then the metabolic overheads associated with basal metabolism and excitation-contraction coupling, together with those of subsequent metabolic recovery process, must be subtracted from the total heat and work observed. By comparing the cross-bridge work component of the remainder to the Gibbs free energy of hydrolysis of ATP, a measure of thermodynamic efficiency is achieved. We describe and quantify this partitioning process, providing estimates of the efficiencies of selected steps, while discussing the errors that can arise in the process of quantification. The dependence of efficiency on animal species, fibre-type, temperature, and contractile velocity is considered. The effect of contractile velocity on energetics is further examined using a two-state, Huxley-style, mathematical model of cross-bridge cycling that incorporates filament compliance. Simulations suggest only a modest effect of filament compliance on peak efficiency, but progressively larger gains (vis-à-vis the rigid filament case) as contractile velocity approaches Vmax. This effect is attributed primarily to a reduction in the component of energy loss arising from detachment of cross-bridge heads at non-zero strain.
Barclay CJ, Woledge RC, Curtin NA. Barclay CJ, et al. Prog Biophys Mol Biol. 2010 Jan;102(1):53-71. doi: 10.1016/j.pbiomolbio.2009.10.003. Epub 2009 Oct 27. Prog Biophys Mol Biol. 2010. PMID: 19836411 Review.
Masuda T. Masuda T. Biosystems. 2009 Feb;95(2):104-13. doi: 10.1016/j.biosystems.2008.08.003. Epub 2008 Aug 27. Biosystems. 2009. PMID: 18793694
Lampinen MJ, Noponen T. Lampinen MJ, et al. J Theor Biol. 2005 Oct 21;236(4):397-421. doi: 10.1016/j.jtbi.2005.03.020. J Theor Biol. 2005. PMID: 15919094
Santillán M. Santillán M. J Theor Biol. 1999 Jul 7;199(1):105-12. doi: 10.1006/jtbi.1999.0946. J Theor Biol. 1999. PMID: 10419763
Stålhand J, Klarbring A, Holzapfel GA. Stålhand J, et al. Prog Biophys Mol Biol. 2008 Jan-Apr;96(1-3):465-81. doi: 10.1016/j.pbiomolbio.2007.07.025. Epub 2007 Aug 11. Prog Biophys Mol Biol. 2008. PMID: 17884150 Review.
Luciano F, Ruggiero L, Minetti AE, Pavei G. Luciano F, et al. Sci Rep. 2024 Apr 18;14(1):8970. doi: 10.1038/s41598-024-59171-8. Sci Rep. 2024. PMID: 38637567 Free PMC article.
Priede IG, Jamieson AJ, Bond T, Kitazato H. Priede IG, et al. J Exp Biol. 2024 Feb 1;227(3):jeb246522. doi: 10.1242/jeb.246522. Epub 2024 Feb 1. J Exp Biol. 2024. PMID: 38230425 Free PMC article.
Kalkhoven JT, Lukauskis-Carvajal M, Sides DL, McLean BD, Watsford ML. Kalkhoven JT, et al. Sports Med. 2023 Dec;53(12):2321-2346. doi: 10.1007/s40279-023-01904-2. Epub 2023 Sep 5. Sports Med. 2023. PMID: 37668895 Free PMC article. Review.
Vilfan A, Šarlah A. Vilfan A, et al. PLoS Comput Biol. 2023 Jul 21;19(7):e1011310. doi: 10.1371/journal.pcbi.1011310. eCollection 2023 Jul. PLoS Comput Biol. 2023. PMID: 37478158 Free PMC article.
Yalçınkaya BH, Genc S, Yılmaz B, Özilgen M. Yalçınkaya BH, et al. Heliyon. 2023 Jun 13;9(6):e17164. doi: 10.1016/j.heliyon.2023.e17164. eCollection 2023 Jun. Heliyon. 2023. PMID: 37389084 Free PMC article.